
andersenlab.com

Sample Application Security Assessment

Security Assessment Report



Independent Security Assessment Report

Andersen has provided this report solely for private and internal use by the Client, and it may not be shared or redistributed without 
Andersen’s express written consent. Andersen’s assessments focus exclusively on information security and the conclusions arrived at in 
this report should not be considered to be a representation or endorsement of the Client’s products or services.


Andersen has performed the Application Security Assessment for ABC Soft, (“Client”) while acting as an independent security assessor. 
This assessment was performed with the intent of evaluating security, and resiliency of Client’s Sample IT systems.


The methodology utilized during this assessment is detailed in . Andersen developed this methodology based on extensive 
professional experience and information system security assessment best practices gathered from the NIST Risk Management 
Framework, Open Source Security Testing Methodology Manual ("OSSTMM"), the National Institute of Standards and Technology 
("NIST") Special Publication 800-115: Technical Guide to Information Security Testing and Assessment, the Penetration Testing 
Execution Standard ("PTES"), NIST Guide Details Forensic Practices, various CIS Benchmarks, and the Open Web Application Security 
Project ("OWASP") Testing Guide.


While this type of assessment is intended to mimic a real-world attack scenario or identify the capacity of the existing controls, 
Andersen is bound by rules-of-engagement, defined scope, allocated time, and additional related constraints. Andersen has made 
every effort to perform a thorough and comprehensive analysis and to provide appropriate remedial advice. However, inherit limitations, 
errors, misrepresentations, and changes to the Client environment may have prevented Andersen from identifying every security issue 
that was present in the Client environment at the time of testing. Therefore, the findings included in this report should be considered to 
be representative of what a similarly skilled attacker could achieve with comparable resources, constraints, and time frame.

Methodology

Additionally, it is worth emphasizing that the findings and remediation recommendations are the result of a point-in-time assessment based on the state of the Client environment as of March 15, 2023. 
Andersen therefore does not provide any assurance related to configuration or control modifications in the Client environment, changes in regulatory or compliance requirements, discoveries of new 
vulnerabilities and attack techniques, or any other future event that may impact the Client’s security posture.


The information contained in this report represents a fair and unbiased assessment of the Client’s environment based on the agreed upon criteria as defined in the Statement of Work. This report is 
provided to the Client as notification of outstanding security risks that threaten the confidentiality, integrity, and availability of sensitive information, as well as to provide assistance and direction with 
remediation. The evidence and references provided for each finding serve as the basis for our qualified opinions in this report.



Management Summary

Andersen identified numerous Medium risk issues that address failures to adhere to established security best practices. In some cases, these vulnerabilities increase the attack 
surface of the assets and may make the exploitation of other weaknesses easier. These findings should be addressed in turn and as time permits.


The security team recommends that the client should conduct a session for planning the remediation of the identified risks, starting with the most important findings.

This report details the findings of the Sample Application Security Assessment carried out between March 02, 2024 and March 15, 2023.


The most important objective of the assessment was to determine whether and how a malicious user can gain unauthorized access to assets that affect the fundamental 
security of the system, files and data, and confirm that the applicable controls required by ABC Soft are in place.


The security team has conducted the assessment based on the Application Security Assessment methodology.


The following issues are evaluated as Critical or High risks and require immediate attention and remediation:

Account Takeover

through weak Reset Password functionality

Sensitive Information

hardcoded in application code

Insecure Direct Object References

users can modify other user's data (IDOR)

Results

As a result of conducting this engagement, Andersen has determined that cumulatively the issues identified pose a High risk to ABC Soft. This evaluation was determined by 
assessing the severity and number of issues identified throughout the environment as well as Andersen’s experience in assessing similar systems.


The overall risk can be lowered by remediating the vulnerabilities detailed in the following chapters.



Scope of Work

Background Information

Andersen performed Application Security Assessment to assess the risk that a real life, targeted 
attacker poses to the security and integrity of the ABC Soft Sample. Understanding the current 
vulnerabilities is the first step in remediating and ultimately enhancing ABC Soft's overall security 
maturity.


The purpose of the assignment was to identify and evaluate any risks or potential issues that could 
impact Confidentiality, Integrity or Availability of the systems in scope. In this assessment, both 
automated and manual security testing techniques were used in order to identify weakness in the 
systems in scope from an attacker’s perspective.

Objectives

The objective of this assignment is to help ABC Soft strengthen the security posture against cyber 
threats.


Securing vulnerabilities and reducing risks within the systems will lead to a drastic reduction in the 
likelihood of:

Exploitation of publicly available exploits through lack of patching;

Financial loss through regulatory penalties;

Disruption of availability through a lack of rate-limiting techniques;

Breach of integrity through weak authorization checks;

Systems compromise, data alteration or data destruction attacks;

Information theft through poor or non-existent cryptographic controls;

Scope Overview

The scope of the assessment included the following assets as authorized by the ABC Soft:

iOS Application Android Application API

Assessment type: Application Security Assessment

Assessment method: Gray Box
Environment: Staging

The Application Security Assessment was performed in the dates between March 
02, 2024 and March 15, 2023.

Limitations

Denial-of-Service (DoS) testing was not performed during this engagement.


This was a time-boxed security assessment. During a time-boxed engagement, the Cyber 
Security Team prioritizes assessment of the most sensitive portions and functions of the 
systems in scope.


No other specific limitations were defined in the scoping phase by the client.



Summary of Findings

Risk Breakdown

The following table summarizes the quantity and severity of the findings identified 
during this assessment:

Residual Risk Severity Total

Critical 1

High 2

Medium 5

Low 0

Informational 0

Total 0
Critical risk High risk Medium risk Low risk Informational

1

2

5

0 0

Category Breakdown

The table below contains a list of areas where vulnerabilities have been identified. The vulnerability 
categories are defined following the Common Weakness and Enumeration (CWE) DB.

Vulnerability Categories Total

Broken Authentication 1

Security Misconfiguration 2

Information Exposure 5

Missing Authorization 0

Cleartext Storage 0

Hardening 0

Using automated and manual techniques, Andersen identified a total of 8 findings within Sample 
environment. These weaknesses threaten the confidentiality, integrity, and availability of the application, the 
environment, and the data contained within it.

Component Breakdown

The table below contains a list of affected components where vulnerabilities have been identified.

Vulnerability Categories Total

Application 3

Mobile 5



Vulnerability Details

Table of Vulnerabilities

Residual Risk CIA Impact Title Identifier

Critical С I A Account Takeover through weak Reset Password functionality SAM-6

High С I A Sensitive information hardcoded in application code SAM-2

High С I A Insecure Direct Object References: Users can modify other 
user's data (IDOR)

SAM-7

Medium С I A Insecure data storage (iOS) SAM-0

Medium С I A Insecure data storage in Shared Preferences SAM-1

Medium С I A Application has no Jailbreak detection capabilities SAM-3

Medium С I A Rooted device detection is easy to bypass SAM-4

Medium С I A Application accepts any SSL Certificate (No SSL Pinning) SAM-5

For each finding, Andersen uses a composite risk score that takes into account the severity of the risk, application’s exposure, 
technical difficulty of exploitation, and other factors. For an explanation of Andersen’s risk rating and vulnerability categorization, 
see the Methodology section.


The table below lists the vulnerabilities identified during the assessment:



Vulnerability Details
V1. Account Takeover through weak Reset Password functionality

An attacker is able to hijack user accounts through the weak implementation of Forgot Password functionality. The 
reset/forgot password functionality is programmed without security considerations.


It is common for an application to have a mechanism that provides a means for a user to gain access to their account in 
the event they forget their password. Very often the password recovery mechanism is weak, which has the effect of 
making it more likely that it would be possible for an attacker other than the legitimate system user to gain access to that 
user's account. Weak password recovery schemes completely undermine a strong password authentication scheme.


Account takeover is the possibility of attackers using different attack vectors, such as broken access controls, insecure 
direct object reference, broken business logic attacks, session hijacking, or other client-side vectors in order to 
compromise user credentials.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Go to the "Forgot password" page

Submit your username/email through the form

Inspect the Recover Password URL

View if it can be used to reset the password of other users

Impact

An attacker can take advantage of the application feature to recover user's accounts forgotten passwords in order to gain 
access into the accounts with the same privileges as the original user. This means that if the attacker manages to enter 
as a normal user, he might have limited access to only view some important information. On the other hand, if he 
manages to enter as an administrative user with global access to the system, he would have almost total control of the 
application together with its content (with the limitations of the web application in itself).

Affected Entity Sample Identifier SAM-6

Risk Statement

An attacker could gain unauthorized access 
to other user's account by retrieving 
legitimate users' authentication credentials 
using the Forgot Password functionality.

Affected Component
Application
Identified Controls: None Identified

Residual Risk Critical (CVSS Score: 9.8)

Classification
Broken Authentication
Likelihood: High

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3-ca
lculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/
UI:N/S:U/C:H/I:H/A:H

Location
ResetPassword Activity
https://abcsoft.com/account/resetPassword



Vulnerability Details | V1
The following evidence has been gathered to illustrate this vulnerability.

Request

GET /api/collab/comments?id=AVL_R13390&since=0&objType=rule 
HTTP/2 Host:abcsoft.com

X-Forwarded-Host: https://evil-hacker.com

Cookie:

Sec-Fetch-Site: same-origin

Te: trailersN/A

Response

HTTP/2 200 OK

Date: Tue, 01 Nov 2022 18:19:40 GMT 
Content-Type: application/json 
Content-Length: 287

Server: nginx

Recommendations

Easy

Make sure that all input supplied by the user to the password recovery mechanism is thoroughly 
filtered and validated.

Do not use standard weak security questions and use several security questions.

Make sure that there is throttling on the number of incorrect answers to a security question. Disable 
the password recovery functionality after a certain (small) number of incorrect guesses.
Require that the user properly answers the security question prior to resetting their password and 
sending the new password to the e-mail address of record.
Never allow the user to control what e-mail address the new password will be sent to in the password 
recovery mechanism.
Assign a new temporary, totally random, and unpredictable password rather than revealing the original 
password.

https://cwe.mitre.org/data/definitions/840.html

https://cwe.mitre.org/data/definitions/287.html

https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sh eet.html

Example POC



Vulnerability Details
V2. Sensitive information hardcoded in application code

Security relevant information is found hardcoded within the application source code. Using tools 
designed to parse the code, sensitive data can be detected as hardcoded within the application source 
code. If the application uses hard- coded constants instead of dynamic content generation for security 
important values, they are disclosed to potential attackers.


Protecting authentication tokens, private information, and other sensitive data is key to application 
security. Public data should be available to everyone, but sensitive and private data must be protected.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Inspect the application source code

View the hardcoded security information

Impact

Hard coding sensitive information, exposes it to attackers. Disclosing sensitive information in 
hardcoded constants increases the area of attack because the information can be used to discover 
further functionalities and more dangerous vulnerabilities.

Affected Entity Sample Identifier SAM-2

Risk Statement
An attacker will have access to sensitive information hardcoded 
within the application code and conduct further attacks

Affected Component
Application
Identified Controls: None Identified

Residual Risk High (CVSS Score: 7.5)

Classification
Information Exposure
Likelihood: High

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location Android Application



Vulnerability Details | V2

Test credentials found within application source code

Recommendations

Moderate

A general recommendation is to use the dynamic generation of variables that contain sensitive information. Do not hardcode sensitive data into the application code, if the code is 
accessible by external users.

Use obfuscation techniques to make the code harder to read and understand.

Classify data processed, stored, or transmitted by an application. Identify which data is sensitive according to privacy laws, regulatory requirements, or business needs. Apply 
controls as per the classification.

https://cwe.mitre.org/data/definitions/547.html

https://owasp.org/www-project-top-ten/2017/A3_2017- Sensitive_Data_Exposure

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d- Testing-Data-Storage.md



Vulnerability Details
V3. Insecure Direct Object References: Users can modify other user's data (IDOR)

Internal users are able to access and modify other users' data due to the application being vulnerable to IDOR.


Insecure direct object references (IDOR) are a type of access control vulnerability that arises when an application uses 
user-supplied input to access or modify objects directly. Attackers can use direct references


to restricted resources and the application fails to verify the user is authorized to access the exact resource.


IDOR brings, depending on the format/pattern in place, a capacity for the attacker to mount an enumeration attack in 
order to try to probe access to the associated objects. An enumeration attack can be described in the way in which the 
attacker builds a collection of valid identifiers using the discovered format/pattern and test them against the application.


The most basic IDOR scenario happens when the application references objects using easy to guess IDs. For example, 
they can be incremental integers, they can contain predictable words like the email of the user, or a folder name.


Suppose that an application lets you modify your data on the following endpoint:

POST /api/users/78963 
{some data}

In this simple scenario, all you have to do is substitute your ID, which is 78963, with another guessed value and modify 
that user's data

Reproduction Steps

The following steps can be used for validation and remediation verification:

Login to the Application

In the Affected Assets: increment the ID to access the resources of other users

Submit the request

View if the data is modified

Affected Entity Sample Identifier SAM-7

Risk Statement
Internal users are able to modify other user's 
data and have unauthorized access to 
resources or operations

Affected Component
Application
Identified Controls: None Identified

Residual Risk High (CVSS Score: 8.7)

Classification
Missing Authentication
Likelihood: High

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3-ca
lculator?vector=CVSS:3.0/AV:N/AC:L/PR:H/
UI:N/S:C/C:H/I:H/A:N

Location
ResetPassword Activity
https://abcsoft.com/account/id



Vulnerability Details | V3
Impact

IDOR vulnerabilities are most commonly associated with horizontal privilege escalation, but they can also arise in relation to vertical privilege escalation. An attacker might be able to perform horizontal and vertical privilege 
escalation by altering the user to one with additional privileges while bypassing access controls. Other possibilities include exploiting password leakage or modifying parameters once the attacker has landed on the user's accounts 
page, for example.

The following evidence has been gathered to illustrate this vulnerability.

Request

GET /api/collab/comments?id=AVL_R13390&since=0&objType=rule HTTP/2


X-Forwarded-Host: https://evil-hacker.com Cookie:

Sec-Fetch-Site: same-origin

Te: trailersN/A

Host:abcsoft.com


Response

HTTP/2 200 OK

Date: Tue, 01 Nov 2022 18:19:40 GMT 
Content-Type: application/json 
Content-Length: 287

Server: nginx

Example POC

Recommendations

Moderate

Preventing insecure direct object references requires selecting an approach for protecting each user-accessible 
object (e.g., object number, filename):

Use per user or session indirect object references. This prevents attackers from directly targeting unauthorized resources. For example, instead of using the resource’s database key, 
a drop-down list of six resources authorized for the current user could use the numbers 1 to 6 to indicate which value the user selected. The application has to map the per-user 
indirect reference back to the actual database key on the server. OWASP’s ESAPI includes both sequential and random access reference maps that developers can use to eliminate 
direct object references.
Check access. Each use of a direct object reference from an untrusted source must include an access control check to ensure the user is authorized for the requested object.

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Ref erence_Prevention_Cheat_Sheet.html

https://portswigger.net/web-security/access-control/idor

https://www.netsparker.com/blog/web-security/insecure-direct-object- reference-vulnerabilities-idor/



Vulnerability Details
V4. Insecure data storage (iOS)

Sensitive data is stored unencrypted within the application folder.


It may be possible for an attacker to retrieve the content of the files using various methods. Because 
the information is stored in cleartext, attackers could potentially read it.


Even if the information is encoded in a way that is not human-readable, certain techniques could 
determine which encoding is being used, then decode the information.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Open the affected files (export the database)

Search for sensitive information such as IBAN, access 
token, phone number, clientID

Impact

The severity of the error can range widely, depending on the context in which the product operates, the 
type of sensitive information that is revealed, and the benefits it may provide to an attacker. The 
business impact depends on the protection needs of the application and data.

Affected Entity Sample Identifier SAM-0

Risk Statement
An attacker with access to the system could read sensitive 
information stored in cleartext

Affected Component
Mobile
Identified Controls: None Identified

Residual Risk Medium (CVSS Score: 5.3)

Classification
Cleartext Storage
Likelihood: Medium

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location iOS Application



Vulnerability Details | V4

Sensitive information stored in Database

Recommendations

Moderate

Avoid using plist and database files to store sensitive pieces of information as they can be easily retrieved by hackers.

Data stored on the device should be considered “unsafe” and only a strong requirement can justify that storage.

During the conception of a mobile app, one crucial thing is to clearly define what is stored in the application, why, and how.

https://cwe.mitre.org/data/slices/919.html



Vulnerability Details
V5. Insecure data storage in Shared Preferences

Sensitive data is stored unencrypted in Shared Preferences files within the application private folder.


The SharedPreferences API is commonly used to permanently save small collections of key-value pairs. 
Data stored in a SharedPreferences object is written to a plain-text XML file.


The SharedPreferences object can be declared world-readable (accessible to all apps) or private. 
Misuse of the SharedPreferences API can often lead to exposure of sensitive data


Anyone with root-level access to the device will be able to see them, as the root has access to 
everything on the filesystem. Also, any application that runs with the same UID as the creating app 
would be able to access them (this is not usually done and you need to take specific action to make 
two apps run with the same UID, so this is probably not a big concern). Finally, if someone was able to 
mount your device's filesystem without using the installed Android OS, they could also bypass the 
permissions that restrict access.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Open Share preferences file

View content of the file for sensitive information

Impact

Insecure data storage can result in data loss, in the best case, for one user. In the worst case, for many 
users. From a business perspective, they can lead to Identity Theft, Fraud, Reputation Damage, External 
Policy Violation (PCI), or Material Loss.

Affected Entity Sample Identifier SAM-1

Risk Statement
An attacker with access to the system might be able to read 
sensitive information

Affected Component
Mobile
Identified Controls: None Identified

Residual Risk Medium (CVSS Score: 5.1)

Classification
Cleartext Storage
Likelihood: Medium

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location Android Application



Vulnerability Details | V5

Username and password stored in Shared Preference folder

Recommendations

Moderate

Avoid using Shared Preferences and other mechanisms that can't protect data when you are storing sensitive information. Shared Preferences are insecure and unencrypted by 
default. You can use secure preferences to encrypt the values stored in Shared Preferences, but the Android KeyStore should be your first choice for storing data securely.

If sensitive data needs to be stored inside the device then that can be stored encrypted, inside the database.

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d- Testing-Data-Storage.md



Vulnerability Details
V6. Application has no Jailbreak detection capabilities

It was discovered that the application allows jailbroken devices to install it, and use it correspondingly.


Jailbreaking iOS devices poses many security threats to the applications and the user. A jailbroken 
smartphone can easily be affected by malware and Trojans that can cause great damage to the 
application files. Hackers can easily install a tracking program on a jailbroken device to steal important 
files and information from the system. Apple recommends iPhone and iPad developers to detect if a 
device is jailbroken and deny the usages on such a device.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Install the application on a jailbroken iOS device

Start and browse the application

Impact

Allowing jailbroken devices to use the application will give to users much more information about the 
application itself and also, some of the security measures that are in place could be eliminated (e.g 
view traffic HTTPS)

Affected Entity Sample Identifier SAM-3

Risk Statement
Installing the application on jailbroken device helps obtaining more 
information about the user or application and increases the 
attacking area.

Affected Component
Mobile
Identified Controls: None Identified

Residual Risk Medium (CVSS Score: 6.2)

Classification
Hardening
Likelihood: Medium

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location iOS Application



Vulnerability Details | V6

The application folder can be accessed; no jailbreak detection activated

Recommendations

Complex

We recommend not allowing Jailbreak devices to install and use the mobile application.

Developers who stop users from running their apps on jailbroken devices could be a good idea from a security perspective, but this is really annoying to a techie user who is not 
able to execute the app only due to the reason that he has rooted his device.

Jailbreaking techniques can be bypassed easily most of the time, and it is highly recommended that developers should use complex techniques in order to stop attackers from 
bypassing their validation controls.

There exists only scattered information online about jailbreak detection methodology. This is partly because jailbreak detection is a sort of “special sauce.” Developers of mobile 
applications would rather keep their methodology private, and there are no real incentives to talking about it publicly.

Most jailbreak detection methods fall into the following categories: File existence checks, URI scheme registration checks, Sandbox behavior checks, Dynamic linker inspection.

https://duo.com/blog/jailbreak-detector-detector

https://developer.apple.com/forums/thread/70603



Vulnerability Details
V7. Rooted device detection is easy to bypass

The security team detected that the application has root detection capabilities that do not allow it to be 
installed on rooted devices, but the detection mechanism is easy to bypass.


The security team is able to decompile the APK and alter the SMALI code in order to eliminate the 
function that detects if the device is rooted

Reproduction Steps

The following steps can be used for validation and remediation verification:

Decompile the APK

Search in smali code all the root detection functions

Change the functions in order to always return false.

Impact

The attacker can access the application folder and read sensitive information.

Affected Entity Sample Identifier SAM-4

Risk Statement An attacker might be able to bypass the detection mechanism

Affected Component
Mobile
Identified Controls: None Identified

Residual Risk Medium (CVSS Score: 4.3)

Classification
Hardening
Likelihood: Medium

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location Android Application



Vulnerability Details | V7

Recommendations

Complex

Use a more complex root detection functionality.

There are a few common ways to detect a rooted Android device:

Check for test-keys (Check to see if build.prop includes the line ro.build.tags=test-
keys indicating a developer build or unofficial ROM)

Check for OTA certificates (Check to see if the file /etc/security/otacerts.zip exists)

Check for several known rooted app's

com.noshufou.android.su

com.thirdparty.superuser

eu.chainfire.supersu

com.koushikdutta.superuser

Check for SU binaries

system/bin/su

/system/xbin/su

/sbin/su

/system/su

/system/bin/.ext/.su

Attempt SU command directly (Attempt to run the command su and check the id of 
the current user, if it returns 0 then the su command has been successful)

https://owasp.org/www-project-mobile-top-10/2014-risks/m10-lack-of- binary-
protections
https://medium.com/secarmalabs/comparison-of-different-android-root- detection-
bypass-tools-8fd477251640
https://medium.com/@cintainfinita/android-how-to-bypass-root-check-and- 
certificate-pinning-36f74842d3be

Changing root detection functions in smali code.



Vulnerability Details
V8. Application accepts any SSL Certificate (No SSL Pinning)

It was possible to intercept, view, and modify all traffic between the app and the server even though the 
traffic was sent over SSL.


A self-signed certificate was installed on the phone prior to testing. The app traffic was then redirected 
to a proxy server that presents the self-signed certificate.


The app, however, does not verify that the certificate is self-signed and still proceeds with allowing the 
user to access the service.

Reproduction Steps

The following steps can be used for validation and remediation verification:

Add a Burp certificate on a jailbroken device and set the proxy in order for the traffic to go through Burp

Explore the application

All traffic can be seen in Proxy

Impact

An attacker would be able to intercept and edit the requests sent by the application to the server. This 
will increase the area of attack.

Affected Entity Sample Identifier SAM-5

Risk Statement
Attackers will use this information to conduct more advance 
attacks and have access to sensitive data

Affected Component
Mobile
Identified Controls: None Identified

Residual Risk Medium (CVSS Score: 6.5)

Classification
Security Misconfiguration
Likelihood: Medium

CVSSv3 code
https://nvd.nist.gov/vuln-metrics/cvss/v3- 
calculator?vector=CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Location
Android Application
iOS Application



Vulnerability Details | V8

No SSL pinning protection activated; The traffic can be intercepted

Recommendations

Moderate

Implement SSL Certificate Pinning which will stop the application if it detects a server certificate that is invalid or self-signed.

https://owasp.org/www-project-cheat- sheets/cheatsheets/Pinning_Cheat_Sheet.html

https://developer.android.com/training/articles/security-ssl

https://developer.apple.com/news/?id=g9ejcf8y



Methodology

Security assessment involves looking for problems on the information systems being tested that 
may allow a malicious attacker to perform unwanted or undesirable actions. Information systems 
are comprised of a number of different software and hardware components. Errors in the 
configuration or programming of these components may create vulnerabilities, or potential 
weaknesses, that may allow an opportunity for an attacker to perform a malicious action. Different 
vulnerabilities require different levels of access or skill to be successfully used in a malicious way.


Andersen follows a highly structured methodology to ensure a thorough assessment of the system 
in scope and its environment is conducted. Our methodology uses a phased approach, consisting of 
information gathering, investigation, assessment, verification, and notification. Andersen employs a 
comprehensive and careful methodology in order to identify any potentially dangerous functionality. 
Prior to performing assessment against these functions, Andersen shares any potential impacts 
with the client. These steps ensure the least amount of business impact possible.


The Andersen Team will discuss a plan of attack as well as any potential concerns, and then will 
seek explicit approval from the client in order to proceed with the exploitation of any vulnerabilities 
that have the potential to impact production operations. The Andersen Team will communicate all 
verified vulnerabilities identified throughout the engagement that present significant danger to the 
client’s organization. This will allow the client to begin planning remediation activities sooner, 
potentially closing the window on further exploitation by an attacker prior to the delivery of the final 
report.


Andersen follows industry best practice standards and methodologies when performing security- 
assessment activities. Such methodologies include:

OpenSourceSecurityTestingMethodologyManual(OSSTMM)

PenetrationTestingExecutionStandard(PTES)

OpenWebApplicationSecurityProject(OWASP)TestingGuide

TheNationalInstituteofStandardsandTechnology(NIST)

PCIDataSecurityStandardPenetrationTestingGuidance(PCIDSS)

TheIntelligenceLifecycle&F3EADCycle(ThreatIntelligence)

OWASPMobileSecurityTestingGuide(MSTG)

PenetrationTestingFrameworkforIoT(PTFIoT)

PCIDSSATMSecurityGuidelines

CISCloudFoundationsBenchmarkStandard

OWASPCodeReviewGuide

ThreatIntelligenceBasedEthicalRedTeamingFramework(TIBER-EU)

ApplicationSecurityandDevelopmentSecurityTechnicalImplementationGuide

SocialEngineeringAttackFrameworkandToolkit(SET)

DigitalForensicsFramework(DFF)

IncidentResponseFramework(NIST)

SecureControlsFramework(SCF)

CRESTPenetrationTestingGuide

CSASTARSelf-Assessment/CAIQ

CISSecurePlatformsBenchmarks(CISSecurity)

ApplicationSecurityVerificationStandard(ASVS)



Application Security Assessment 
Methodology

After the client provides the initial information and the application, the Andersen Team will run the application and test the credentials 
taking note of their privilege levels. During the initial review of the application, the consultant will take note of any critical areas of the 
application and identify potentially sensitive functions to target during the testing efforts.


The Andersen consultant will run and analyze the mobile application on a jailbroken or rooted device, provided by Andersen and 
connected to a customized assessment environment compromised of wireless access points, proxies, and many other tools. If the 
consultant does not use a Andersen- provided device, the client must supply a suitable test device. Using a jailbroken or rooted device 
simulates a potential attacker’s approach for attacking an application or accessing sensitive data on users’ mobile devices. The 
Andersen team uses a methodology that focuses on real-world scenarios to provide an accurate risk assessment.


In some instances, certain mobile security features may limit the application functionality on a testing device. These may include 
jailbreak or root detection, tamper prevention, device provisioning, or certificate pinning. When such features are present, we recommend 
providing an alternate build of the application with these features disabled or removed. The Andersen consultant will validate the 
strength of the security controls in the original application, but if the consultant cannot defeat these in a reasonable period of time, the 
consultant will continue testing with the alternate version. This approach allows for in-depth testing of the application within the time 
allotted.

An Application Security Assessment (ASA) is an assessment of the application on the running device as well as the associated back end components. The objective of the assessment is to identify 
vulnerabilities within these environments and verify their existence using manual testing techniques. These assessments are most successful when customers share all known information with the 
tester; however, the customer can elect to share less information.


The MASA is a comprehensive assessment that identifies vulnerabilities ranging from Critical to Informational severity. Andersen’s Application Security Team identifies, verifies, and reports anything that 
raises the attack surface of the application. We will use multiple techniques to simulate attacks from both an unauthenticated and authenticated attacker perspective, exposing the greatest amount of 
attack surface and providing the most value from the testing efforts.



Application Security Assessment 
Methodology
The methodology employed during a Mobile Application Security Assessment involves the following stages

Workflow Study

Vulnerability Identification

Exploitation

Reporting
Tasks performed

Executive Summary
Technical Summary
Clarification and Results Presentation

Tasks performed
Identify Business Risks
Building Test Risk
Exploitation and verification

Test Auth & Access Controls
Username & Password attacks
Testing with limited access, multiple accounts
Test for insecure methods

Test Session Management
Session Fixation and Termination
XSRF
Mapping of token to sessions

Test Client Side Controls
Hidden Files, Cookies
Pre-set Parameters, Length Limits
Tick Client Components

Map the Content
Explore Visible Content and Discover Hidden Content
Discover Default Content
Identify Specific Function

Analyse
Identify Functionality
Identify Data Entry Points
Identify Technologies

Test Input Validation
SQL Injection, Cross Site Scripting 
Path Traversal, Script Injection
File Injection

Test Logic Flaws
Incomplete Input
Trust Boundaries
Transaction Logic

Test Server Flaws
Configuration Checks
Payload Checks



Application Security Assessment 
Methodology

TestingReportingExploitationVulnerability Assessment 
& Identification

Intelligence Gathering & 
Workflow Study

Conduct passive and active information gathering to determine the level of 
information that can be found about the assets in scope. These actions are 
conducted in order to understand what level of exposure the assets have, and 
how an attacker can use this information to conduct further attacks.

Security Engineers investigate for vulnerabilities through manual 
searches complemented by automated tools. The objective is to 
discover as many vulnerabilities as possible on the target.

The exploitation phase consists in testing possible 
exploitations of the flaws identified in the previous 
phase. This step allows using certain flaws as “pivots”, 
in order to discover new vulnerabilities. The exploitation 
of security vulnerabilities allows evaluating their real 
impact and thus their criticality level.

The Report will communicate to the reader the specific goals of the Penetration Test 
and technical details of findings of the assessment exercise. The intended audience will 
be those who are in charge of the oversight and strategic vision of the security program 
as well as any members of the organization, which may be impacted by the 
identified/confirmed threats.

Andersen conducts testing using both automated and manual 
testing methods. A majority of the testing will focus on manual 
testing. Andersen uses automated testing, where possible, on back 
end and web service components, and manually validates identified 
vulnerabilities. Throughout the assessment, Andersen uses a 
mixture of commercial, open source, and custom-built tools.

The steps are aligned to the in-depth security concepts and are focused on process and technical security controls and their implementation in the various phases of the project delivery. The results 
provided for each activity will include a detailed and comprehensive assessment of client’s current security posture, expansive recommendations, and tools and knowledge to facilitate the continuous 

improvement.



Application Security Assessment 
Methodology
The Andersen Team configures the automated tools using information obtained during the 
information-gathering phase. This ensures the highest level of success, by removing obstacles 
that typically hinder their functionality and ability to navigate the application properly.


Andersen security checklist for Mobile Applications includes, but is not limited to, identification 
of the following risks:

Examples of tools that Andersen uses:

Burp Suite Pro Apktool dex2jar Android Studio JD-Gui Frida

Hopper App Xcode iExplorer SQLite Studio adb ssh Cydia

Pangu TaiG cycript Wireshark

OWASP Top 10 Mobile Risks

M1: Improper Platform Usage

M2: Insecure Data Storage

M3: Insecure Communication

M4: Insecure Authentication

M5: Insufficient Cryptography

M6: Insecure Authorization

M7: Client Code Quality

M8: Code Tampering

M9: Reverse Engineering

M10: Extraneous Functionality



Application Security Assessment 
Methodology

App Profiling and Information Disclosure

Default Banners

Unhandled Error Conditions

HTML/JavaScript Comment Information Leakage

Extraneous Contentin Web Root

Source Code Disclosure

Robots.txt Path Disclosure

Content Expiration and Cache Control

Account Enumeration

Backup/Archive Content

Bit Bug/Referrer Header Leakage

Platform and Third-Party Misconfiguration

Default Administrative Credentials

Default Contentand Scripts

Application Script Engine

Web Server

Weak SSL Implementation

Flawed Use of Cryptography

Cookie and Session Handling

Session Fixation/Hijacking

Set-Cookie Weaknesses

Sensitive Information Disclosure

Cookie Poisoning

Multiple Simultaneous Login Allowed

Session Timeout

Explicit/Implicit Logout Failures

Cookieless Sessions

Custom Session Management

Andersen performs extensive manual testing, which comprises a significant majority of the testing effort. During this portion of the 
testing, the Andersen consultant executes the application, and analyzes the communication, functions, and the data the application 
sends and receives. The Andersen Team tests complex interactions, workflows, and business logic. Additionally, the Team manually 
evaluates areas of the application and specific vulnerabilities that automated tools either have difficulty with or are unable to identify.



Application Security Assessment 
Methodology

Command Injection Flaws

SQL Injection

XXE, XPath, and XML Injection

SSI/OS Command Injection

Server Script Injection/Upload

Cross-Site Scripting (XSS)

Buffer Overflow

Logic Flaws

Privilege Escalation

Sensitive Information Disclosure

Data Mining/Inference

Functional Bugs

Application-Specific Control Failures

Cross-SiteTracing (XST)

Weak Data Validation

Race Conditions

CPU-Intensive Functions

Client-Side Flaws

Exposure of Sensitive Business

Logic

Relianceon Client-Side Validation

AJAX/Web Service Flaws

Java Applet/ActiveX

Control/Flash Weaknesses

Authentic. and Authorization

Unauthenticated Sensitive Content

Poor Separation of Privilege

Brute-Force Login

Weak Password Policy

Account Lockout/Denial of Service

SSO Weaknesses

Security Question Weaknesses

CAPTCHA Flaws

Andersen validates any identified communication channels for proper confidentiality and integrity. We monitor the application execution on the 
device, and examine the device from a high-level forensic perspective to identify areas where the application may be storing or caching 
sensitive information in an insecure manner. After reverse engineering the application binary to the extent possible, we analyze it for information 
leakage or hard-coded secrets. During testing, we map the back-end environment and test any in-scope components for vulnerabilities.



Threat Classification and Reporting

When any exploitable vulnerability is discovered, further research is conducted on that vulnerability to identify its level of severity. 
The risk is calculated according to the following criteria:

After identification and classification of the findings is complete, the details of each finding will be documented and detailed 
recommendations will be given on how to mitigate the discovered threats.

Impact

The security impact on the web application in the event of an 
exploitation of this vulnerability by an attacker. This criterion 
indicates the benefit of the attack to the attacker.

Popularity and Ease of Identification of the 
Vulnerability

This criterion factors in the public availability of information and 
tools to detect the vulnerability. Problems that have easy to use 
exploit code available on the Internet, for example, would get a higher 
rating. This criterion indicates the probability of an attack.

EaseofExploitation

The level of difficulty for an attacker to exploit this problem.Difficulty 
could increase due to technical complexity, the need for prior 
knowledge of the network, or other factors. This criterion indicates 
the cost in time and resources of the attack for the attacker.



Threat Classification and Reporting
The risk is classified as follows:

Risk Classification Description

Critical Vulnerabilities in this category usually have the following characteristics:

Exploitation of the vulnerability results in root/administrator-level access to the system;

The information required in order to exploit the vulnerability, such as example code, is widely available to attackers;

Exploitation is usually straightforward, in the sense that the attacker does not need any special authentication credentials or knowledge about individual victim systems, and does not 
need to persuade a target user, for example via social engineering, into performing any special functions.

High Vulnerabilities that score in the high range usually have the following characteristics:

The vulnerability is difficult to exploit;

Exploitation does not result in elevated privileges, but may grant unintended access to data;

Exploitation does not result in a significant data loss.

Medium Vulnerabilities that score in the medium range usually have the following characteristics:

Denial of service vulnerabilities that are difficult to set up;

Exploits that require an attacker to reside on the same local network as the victim;

Vulnerabilities that affect only nonstandard configurations or obscure applications;

Vulnerabilities that require the attacker to manipulate individual victims via social engineering tactics;

Vulnerabilities where exploitation provides only very limited access.

Low Vulnerabilities in the low range typically have very little impact on an organization's business. Exploitation of such vulnerabilities usually requires local or physical system access.

Informational These are not vulnerabilities, but additional information gleaned from the target during vulnerability testing.



Risk Calculation
Andersen utilize the Basic Common Vulnerability Scoring system (“CVSS”) version 3 by default for Residual Risk calculation, 
which takes into consideration the following criteria:

Criteria Description

Attack Vector This metric indicates how ‘close’ an attacker needs to be to the object. Is physical access needed at one end (AV:P)? 
Or can the object at the other end be attacked via the network?

Attack Complexit How easily can the attacker reach their target? 
Is it with in their control?

Required Privileges Does the attacker need privileges (authorization) before they can carry out their attack? 
If this is the case, the score is lower, otherwise, it is higher.

User Interaction Must a user do anything first before the attacker reaches their target? If the user, for example, has to click on a link first, the value would be ‘required’ (UI:R).

Scope The scope describes whether the effects of an attack ‘only’ affect the vulnerable components or other components. In the last case (‘changed’ S:C), the scope score increases

the base score if the latter has not already reached the maximum value of 10.

Confidentiality Impact This metric indicates to what extent the attack affects confidentiality.

A ‘high’ (C:H) value means that confidentiality has been totally lost.

Integrity Impact In the same way, this metric describes the influence on the integrity of the data. If, for example, the attackers were able to modify all files, the impact would be set to

‘high’ (I:H).

Availability Impact This measure is also very similar to the other impact metrics.If the attacker succeeds or were able to succeed in denying the availability of the components so that they can no 
longer be accessed, the maximum value ‘high’ (A:H) would be reached.



Thank you for your attention!
Bringing automation and clarity to Cyber Security

andersenlab.com


